Synthesis of 2-cyanoacrylates via 2-cyanoacryloyl chloride

N. G. Senchenya,* K. A. Mager, T. I. Guseva, and Yu. G. Gololobov

A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 ul. Vavilova, 117813 Moscow, Russian Federation.

Fax: +7 (095) 135 5085

Monomers that are difficult to obtain, such as *tert*-butyl 2-cyanoacrylate, trimethylsilylmethyl 2-cyanoacrylate, 2,2,3,3-tetrafluoropropyl 2-cyanoacrylate, and the previously unknown adamantyl 2-cyanoacrylate were prepared starting from 2-cyanoacryloyl chloride.

Key words: 2-cyanoacrylate; 2-cyanoacryloyl chloride.

Once the synthesis of free 2-cyanoacrylic acid by thermolysis of ethyl 2-cyanoacrylate had been reported, it became possible to prepare some 2-cyanoacrylates both by direct esterification of the acid² and *via* the acyl chloride.³

We showed that various alkyl 2-cyanoacrylates can be prepared according to Scheme 1.

Scheme 1

$$PCl_5 + CH_2 = C(CN)COOH \longrightarrow [CH_2 = C(CN)COCI] \longrightarrow$$

$$ROH \longrightarrow CH_2 = C(CN)COOR$$

$$1-4$$

We could not isolate pure 2-cyanoacryloyl chloride, since it polymerizes when its solution is concentrated. However, this compound may be used for further reactions in solution. The corresponding alkyl 2-cyanoacrylates were prepared by the reactions with excess

alcohols. $^{1-3}$ The physicochemical characteristics of compound 1 (Table 1) are consistent with the literature data. 4

Monomers that are difficult to obtain, viz., tert-butyl 2-cyanoacrylate (2) and trimethylsilylmethyl 2-cyanoacrylate (3), and the previously unknown adamantyl 2-cyanoacrylate (4) can be prepared using the same reaction.

Experimental

2,2,3,3-Tetrafluoropropyl 2-cyanoacrylate (1). A mixture of 2-cyanoacrylic acid (3.65 g), PCl₅ (8.5 g), hydroquinone (0.01 g), o-xylene (30 mL), and toluene (30 mL) was stirred under an argon atmosphere until a transparent solution formed. Then POCl₃ and a part of the solvent were evaporated (to a volume of 25 mL) *in vacuo* at 20 °C. 2,2,3,3-Tetrafluoropropanol (6 g) in toluene (30 mL) was added to the resulting solution, and the mixture was stirred for 15 min and fractionated *in vacuo* under argon to give 7.9 g of compound **1**.

Compounds **2–4** were prepared in a similar way. Cyanoacrylate **4** was recrystallized from toluene. The physicochemical properties and ¹H NMR spectral data for compounds **1–4** are given in Table 1.

Table 1. Properties of 2-cyanoacrylates

Com- pound	R	Yield (%)	B.p./°C (p/Torr)	¹ H NMR ((CD ₃) ₂ CO, δ , J/Hz)
1	CH ₂ CF ₂ CF ₂ H	70	68-69 (1)	4.79 (t.t, ${}^{3}J_{F-H} = 13.3$, ${}^{4}J_{F-H} = 1.5$, 2 H, OCH ₂); 6.40 (t.t, ${}^{2}J_{F-H} = 52.3$, ${}^{3}J_{F-H} = 4.7$, 1 H, CF ₂ H); 6.99 and 7.21 (both s, 2 H, C=CH ₂)
2	CMe ₃	45	50-52 (1)	1.54 (s, 9 H, Me ₃); 6.76 and 7.00 (both s, 2 H, C=CH ₂)
3	CH ₂ SiMe ₃	55	75-76 (1)	0.16 (s, 9 H, SiMe ₃); 4.05 (s, 2 H, CH ₂ Si); 6.90 and 7.12 (both s, 2 H, C=CH ₂)
4*	Adamantyl	50	M.p. 85 °C	1.61, 2.08, 2.16 (m, 3 H, 6 H, 6 H, Ad-fragment); 6.92 and 7.10 (both s, 2 H, C=CH ₂)

^{*} Found (%): C, 72.79; H, 7.24; N, 6.01. C₁₄H₁₇NO₂. Calculated (%): C, 72.72; H, 7.30; N, 6.06.

References

- Ger. Pat. 3415181, 1985, Chem. Abstrs., 1986, 104, 148334.
 Yu. G. Gololobov and I. V. Chernoglazova, Izv. Akad. Nauk, Ser. Khim., 1993, 997 [Russ. Chem. Bull., 1993, 42, 961 (Engl. Transl.)].
- I. I. Kandror, B. D. Lavrukhin, I. O. Bragina, M. A. Galkina, and Yu. G. Gololobov, *Zh. Obshch. Khim.*, 1990, 60, 2160 [*J. Gen. Chem. USSR*, 1990, 60 (Engl. Transl.)].

4. Ger. Pat. 1928104; Chem. Abstrs., 1970, 72, 676667c.

Received April 8, 1994